Electrochemical Behavior of Cobalt in Post-Via Etch Cleaning Solutions

Author:

Bilouk Sabrina1,Pernel Carole2,Broussous Lucile1,Ivanova Valentina3,Nogueira Ricardo4

Affiliation:

1. STMicroelectronics

2. CEA - LETI

3. Universität Ulm

4. LEPMI

Abstract

The integration of CoWP and CoWB self-aligned barriers (SAB) for 32 nm technology nodes allows improving copper interconnections reliability [1, 3]. However the introduction of such materials in copper interconnection levels drives new challenges for plasma dry etch and wet clean processes. Indeed, during the post-via-etch cleaning step, cobalt and copper can be altered by corrosion. Moreover, a galvanic coupling between cobalt, the major component of SAB, and copper can thermodynamically occur. In this way, the cleaning solution acts as ionic medium providing a contact between the two metals. Thus, both metals polarize to a mixed potential comprised between the individual open circuit potentials (OCP) of cobalt and copper. As a result, the less noble metal can suffer from accelerated corrosion, and the more noble metal corrodes with slower rate. According to thermodynamic aspects, cobalt in contact with copper is the less noble metal. Consequently, Co is susceptible to undergo galvanic corrosion which may enhance the dissolution of the SAB.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of Slurry Additives on Co-BTA Complex Stability and Inhibition Property During Co CMP Process;ECS Journal of Solid State Science and Technology;2022-08-01

2. Characterization of Different Cobalt Surfaces and Interactions with Benzotriazole for CMP Application;ECS Journal of Solid State Science and Technology;2020-07-10

3. Aqueous Cleaning and Surface Conditioning Processes;Handbook of Silicon Wafer Cleaning Technology;2018

4. Oxygen Control for Wet Clean Process on Single Wafer Platform;Solid State Phenomena;2016-09

5. Chemistry in Interconnects;Chemistry in Microelectronics;2013-03-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3