Numerical and Experimental Research of Design Optimization of Baths for the Production of Nanofibers by the Electrospinning

Author:

Petrů Michal1,Novák Ondřej1,Ševčík Ladislav1,Lepšík Petr1

Affiliation:

1. Technical University of Liberec

Abstract

A study and analysis showed that the increase in production and the quantity of nanofibers obtained from electrospinning may be provided by not only increasing the potential gradient between the electrodes, but also by the suitable distribution of the intensity of the electrostatic field. Through a numerical simulation using the finite element method, it was found that the intensity distribution of the electrostatic field is influenced not only by the potential gradient, type and shape of the electrodes, polymer properties and its concentration, humidity, ambient temperature, but also by other parameters, such as relative permittivity of the material and shape of the construction geometry. Experiments have been done with the functional baths for polymer solution deposition with a different geometry and relative permittivity. By using the proposed changes in design and relative permittivity for the experiment with the polymer PVP with TiO2 at 23.2 ± 3 °C and humidity of 14.4 ± 3 % and a potential gradient of 60 kV, the production of nanofibers can be increased by about 50 ± 3%. Key words: Electrospinning, optimization, nanofibers, FEM, reservoir

Publisher

Trans Tech Publications, Ltd.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3