Prediction of Power Transformer Fault Based on Auto Regression Model

Author:

Zheng Rui Rui1,Wu Bao Chun1,Zhao Ji Yin1

Affiliation:

1. Dalian Nationalities University

Abstract

Dissolved gases analysis is the essence to diagnose and forecast power transformer fault. This paper utilized an Auto Regression model to predict contents of gases dissolved in power transformer oil, and adopted Akaike's Information Criterion to determine model order. Then, the prediction results of AR model are compared with results of Gray model. Finally, gray artificial immune algorithm diagnosed power transformer fault types through gases contents predicted by Auto Regression model. Experiments demonstrates that Auto Regression model has a higher accuracy than Gray Model, and the fault prediction results of the proposed algorithm are in accord with the results using real gases contents, thus , the power transformer fault prediction algorithm present in the paper is effective and reliable.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Reference10 articles.

1. International Electrotechnical Commission. IEC-60599, Mineral oil-impregnated electrical equipment in service guide to the interpretation of dissolved and free gases analysis. (2007).

2. State Economic and Trade Commission of China. DL/T722-2000, Guide to the analysis and the diagnosis of gases dissolved in transformer oil. Beijing: China Electric Power Press. (2001). In Chinese.

3. P. SGeorgilakis, J. A, Katsigiannis, K. P. Valavanis, et al: Journal of Intelligent and Robotic Systems, Vol. 45, No. 2, (2006), pp.181-201.

4. S W Fei, C L Liu, Y B Miao: Expert Systems with Applications, Vol. 36, No. 3, (2007), pp.6326-6331.

5. RuiRui Zheng , JiYin Zhao , Min Li, BaoChun Wu: Advanced Materials Research, Vols. 204-210, (2011), pp.1553-1558.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3