Influence of Chemical Reaction and Arrhenius Activation Energy on Hydromagnetic Non-Darcian Casson Nanofluid Flow with Second-Order Slip Condition

Author:

Titiloye Emmanuel Olurotimi1,Adeosun Adeshina Taofeeq1,Gbadeyan Jacob Abiodun1

Affiliation:

1. University of Ilorin

Abstract

This article investigates the combined effect of second-order velocity slip, Arrhenius activation energy and binary chemical reaction on reactive Casson nanofluid flow in a non-Darcian porous medium. The governing equations of the problem were first non-dimensionalized and later reduced to ordinary nonlinear differential equations by adopting a similarity transformation. The emerging nonlinear boundary value problem was solved by using Galerkin weighted residual method (GWRM). The obtained results were compared with those found in the literature to validate our method. The impact of pertinent parameters on the velocity component, temperature distribution and concentration profile are presented using graphs and were discussed. The computational results show that an increase in second order slip parameter significantly results to an increase in the temperature as well as nanoparticle concentration profiles, while it reduces the velocity profile.

Publisher

Trans Tech Publications, Ltd.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3