An Electrohydraulic Direct Current Discharge for Inactivation of Escherichia coli in High-Bacterial Density Wastewaters

Author:

Gwanzura Emmanuel1,Awolusi Oluyemi O.2,Kumari Sheena2,Ramjugernath Deresh1,Iwarere Samuel A.3ORCID

Affiliation:

1. University of KwaZulu-Natal

2. Durban University of Technology

3. University of Pretoria

Abstract

The United Nations, through its Sustainable Development Goals, have identified access to clean water as one of the challenges facing society. With reported global deaths exceeding 1 million annually linked to untreated water consumption, which is usually contaminated by pathogenic micro-organisms, further research continues in water disinfection. The direct generation of non-thermal plasma in water is a promising method for the inactivation of disease-causing bacteria present in the wastewater. This study explored the efficacy of plasma in the inactivation of different bacterial densities (4.0×104, 1.5×105, and 2.5×107 CFU/mL) using a 500 mL plasma batch reactor operating at atmospheric pressure. The plasma discharge was generated in water by a Technix-SR-10R-5000 high voltage direct current power supply in negative polarity with a set current of 0.45 A and a maximum pre-set ignition voltage of 9 kV. The electrodes used in the discharge was a copper material. A bacterial culture of Escherichia coli ATCC® 25922TM (E.coli) was used as a model for the direct plasma discharge. The study further investigated the contribution of copper ions (0.4 and 0.7 mg/L) released into the water during treatment by having two control reactors that were not exposed to plasma. The results show a complete inactivation at 180 seconds for the bacterial densities from 4.0×104 to 2.5×107 CFU/mL. The results from this study indicated the potential of a direct electric discharge in handling water source with high-bacteria densities.

Publisher

Trans Tech Publications, Ltd.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3