Heavy Metal Removal from Wastewater of Palm Oil Mill Using Developed Activated Carbon from Coconut Shell and Cow Bones

Author:

Adeleke Abdul Rahman Oyekanmi1,Abdul Latiff Ab Aziz1,Daud Zawawi1,Mat Daud Nur Falilah1,Aliyu Mohammed Kabir1

Affiliation:

1. University Tun Hussein Onn Malaysia

Abstract

Palm oil mill efluent (POME) is the major industrial waste water in Malaysia and Indonesia. The processing of (POME) before discharge is a major challenge to researchers. In this study, the adsorption experiment of zinc ion from (POME) produced from the processed palm oil as primary treatment has been investigated using coconut shell and cow bone activated carbon. Experiments were conducted at a fixed initial concentration, contact time, shaking speed and at different adsorbent dosage to obtain optimum condition for the uptake of zinc ion from POME. The coconut shell carbon exhibited better removal efficiency than the cow bone powder. The results obtained at fixed condition of pH 7, contact time of 105 minutes, shaking speed of 150 rpm showed more than 90% uptake for both adsorbents. The result of the adsorption study was further analyzed using Langmuir and BET model to determine the experimental isotherm. The result showed that equilibrium data fitted better with BET model for coconut shell carbon and better with Langmuir model for cow bone powder. The result of the adsorption experiments showed that heavy metal of zinc can be sufficiently reduced on both coconut shell carbon and the cow bone powder. The morphology of both adsorbents was observed using the scanning electron microscope (SEM), the pore sizes of the adsorbents supported the uptake of zinc ion from the raw POME.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3