Strong Lines Emitted from Positive Column of Narrow Bore T2 Low-Pressure Ar-Hg Discharges

Author:

Han Qiu Yi1,Zhang Shan Duan1

Affiliation:

1. Fudan University

Abstract

The electric field and absolute radiance of 13 strong lines in the positive column of narrow bore T2 (outer diameter 7 mm) low-pressure Ar-Hg discharges were measured experimentally, which includes 11 Hg lines ranging from 185 to 579 nm and 2 Ar lines of 811, 842 nm. The discharges were operated with different argon filling pressure ranging from 2 to 10 Torr (corresponding to 266 to 1333 Pa), for discharge currents 20-200 mA and cold spot temperature 20-80 °C (0.16-11.8 Pa Hg vapour pressure). The Koedam factors of important emission lines were also measured for various discharge parameters, in order to convert radiance to exitance, whereafter the radiant power of all the lines except 185 nm, could be calculated and their radiant efficiency could be compared as well. Considering the absorption of 185 nm radiation in air, the ratio of the radiance at 185 nm to that at 254 nm was measured instead of its Koedam factor for current 80-200 mA and cold spot temperature 20-60 °C. Therefore, 185 nm radiant power was derived indirectly from that of 254 nm in corresponding discharge conditions. According to our measured results, the argon pressure for the maximum production of 254 nm radiation is around 5 Torr. It is showed that the optimum cold spot temperature for 254 nm radiant efficiency is higher than 50 °C, which is consistent with the temperature dependence on the tube diameter. With increasing discharge current and cold spot temperature, 185 nm radiant power has the similar tendency to that of 254 nm, while the fraction of electrical power converted to 185 nm radiation increases slightly with these parameters. Generally, the ratio of radiant power at 185 nm to that at 254 nm is higher than 0.2. For evaluating the energy balance of the positive column as well as the luminous efficacy of the fluorescent lamp product, the radiant powers of other strong lines also has significantly effect though they are considerably smaller than that of 254 nm and 185 nm. Besides, it must be taken in consideration that mercury depletion on the axis of positive column is serious for T2 narrow tube discharge especially at low Hg vapour pressure and high current.

Publisher

Trans Tech Publications, Ltd.

Reference11 articles.

1. M. Koedam, A. A. Kruithof, J. Riemens: Physica Vol. 29 (1963), p.565.

2. G. G. Lister, J. E. Lawler, W. P. Lapatovich, et al: Rev. Mod. Phys. Vol. 76 (2004), p.541.

3. G. G. Lister: in Low Temperature Plasma Physics vol. 1, 2nd edn ed R Hippler et al (Wiley, New York 2007) p.599.

4. J. F. Waymouth, F. Bitter: J. Appl. Phys. Vol. 27 (1956), p.122.

5. M. A. Cayless: in Proc. Vth Int. Conf. on Phenomena in Ionized Gases (ICPIG), (Munich 1962) p.263.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3