Modeling of Heat Transfer in Pipeline Steel Joint Performed by Submerged Double-Arc Welding Procedure

Author:

Birsan Dan Catalin1,Scutelnicu Elena1,Visan Daniel1

Affiliation:

1. “Dunarea de Jos” University of Galati

Abstract

Submerged arc welding is the most applicable and productive procedure when thick sections have to be welded. Nevertheless, the manufacturers of pressure vessels, pipelines, ships and offshore structures keep on looking for new and modern design solutions of equipments and technologies which should lead to increase of welding process productivity. For instance, the longitudinal welds of pipelines are, mostly, performed by submerged arc welding procedure with multiple arcs and/or multi-wires, such as twin, tandem or twin-tandem, in order to increase the process productivity. However, achievement of optimal mechanical properties of the welded joint should remain the most important quality criteria. It is well known that dependence of the mechanical and metallurgical changes on heat transfer plays a major role in obtaining of safe welded structures and preserving of their structural integrity. That is why the investigation of heat transfer induced by the welding process is required. Furthermore, setting of distance between thermal sources and its influence on the overlapping phenomenon of temperature fields should be explored when submerged double-arc welding procedure is applied. Three dimensional finite element model of butt welded joint - used for simulation of heat transfer in pipeline steel joint performed by submerged double-arc welding process - is developed and described in this paper. Numerical results and a comparative analysis related to the temperature distribution, thermal history, and temperature variation in cross section of the welded joint at different time steps are discussed. Finally, important conclusions regarding the influence of distance between thermal sources on thermal effects and temperature fields overlapping are drawn.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3