Affiliation:
1. Universiti Pendidikan Sultan Idris
2. University of Sheffield
3. Sheffield Hallam University
4. Institute of Technology Tallaght (ITT Dublin)
5. Universiti Kebangsaan Malaysia (UKM)
Abstract
The characteristics of cadmium sulphide (CdS) and lead sulphide (PbS) nanoparticles, grown inside Langmuir-Blodgett (LB) multilayer films of 5,11,17,23-tetra-tert-butyl-25,27-dicarboxymethoxy-26,28-dihydroxycalix [arene (I), have been studied using ellipsometry, UV-visible spectroscopy, and transmission electron microscopy (TEM). Multilayer films were formed by transferring a floating Langmuir monolayer of I onto substrates using LB deposition and water subphase containing Pb2+ or Cd2+ ions. The nanoparticles were fabricated by exposing cadmium-or lead-containing multilayer films of I (20-80 monolayers thick) to hydrogen sulphide (H2S) gas for 12 hours. By Gaussian fitting of the absorbance - energy spectra, the size of the clusters and their dispersion were found to be 1.43±0.18 nm and 1.21±0.05 nm for CdS and PbS respectively. This is the first time that such thick LB films of an amphiphilic compound possessing such high thermal stability (m.pt. ~270°C) have been used as the vehicle for the formation of CdS and PbS semiconductor particles.
Publisher
Trans Tech Publications, Ltd.