Silver Nanoparticles on Zinc Oxide: An Approach to Plasmonic PV Solar Cell

Author:

Hossain Mohammad Kamal1,Drmosh Qasem Ahmed1,Al Harabi Fahhad2,Tabet Nouar1

Affiliation:

1. King Fahd University of Petroleum and Minerals

2. Qatar Foundation

Abstract

Efficient light management in solar cells can be achieved by incorporating plasmonic nanoscatterers that support surface plasmons: excitations of conduction electrons at the interface/surface. As known, light trapping increases the amount of light absorbed by bouncing the light within the cell, giving it a chance to be absorbed thereby increasing the absorption and scattering cross-section. The challenge is to fabricate these plasmonic nanoparticles in cost-effective method as well as without hampering optical, electrical and topographical properties of underneath layers. Here in this report a simple two step method was adopted to fabricate silver nanoparticles on zinc oxide followed by topographic and elemental analysis thereof. Numerical calculation was carried out to elucidate optical scattering of silver nanoparticles of various sizes as well as that of dimer. Near-electric field distribution of single silver nanoparticles and dimer along with the individual component of electric field was simulated by finite different time domain analysis. Using the benefit of increased scattering cross-section and ease of such nanoparticles fabrication, a cell configure is proposed herewith.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3