A Model for Enhanced Up-Conversion Luminescence in Erbium-Doped Tellurite Glass Containing Silver Nanoparticles

Author:

Ghoshal Sib Krishna1,Sahar M. Rahim1,Dousti M. Reza1,Arifin Ramli1,Rohani M. Supar1,Hamzah Khaidzirh1

Affiliation:

1. Universiti Teknologi Malaysia

Abstract

Nanoparticles (NPs) size dependent enhancement of the infrared-to-visible frequency up-conversion (UC) and absorption coefficient in silver NPs embedded Er3+ doped tellurite glasses on pumping with the 976 nm radiation are investigated. Rate equations are derived by developing a comprehensive 4-level model in integrating the effects of quantum confinement and local field of silver NPs. Considering the spherical NPs size distribution as Gaussian, an analytical expression for the luminescence intensity and absorption coefficient are obtained for the first time. An enhancement in UC emission intensity of the green bands (2H11/2→4I15/2 and 4S3/2→4I15/2) and red band (4F9/2→4I15/2) emission of Er3+ ion at temperature 250 K and at optimized Er3+ concentration 1.0 mol% is observed up to few times in the presence of silver NPs. Furthermore, the green emission shows larger enhancement than the red emission. The observed of Er3+ luminescence is mainly attributed to the local field effects namely the surface plasmon resonance of silver NPs that causes an intensified electromagnetic field around NPs, resulting in enhanced optical transitions of Er3+ ions in the vicinity. The model is quite general and can be applied to other rare earth doped glasses containing metallic NPs. Our results on NPs size dependent emission intensity and absorption coefficient are in conformity with other findings. The present systematic study provides useful information for further development of UC lasers and sensors.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3