Tribological and Corrosive Properties of Tin/AlN Multilayer Film

Author:

Tang Pu Hong1,Mao Jie1,Feng Chong You1

Affiliation:

1. Jiaxing Vocational and Technical College

Abstract

TiN/AlN nanoscale multilayer films were deposited by pulsed laser ablation on silicon, with different argon and nitrogen gas flow rates. The total thickness of the TiN/AlN multilayer film was approximately 1μm. The friction and corrosion properties were studied by tribological and corrosive tests. In tribological tests, ball-on-disc was used to determine coefficients of friction and wear rates. The coefficient of friction against a Si3N4 ball varied considerably between films, as does the wear rate. The lowest coefficient of friction μ=0.97 was shown at sample 1, whereas the other three multilayer films were ranged from 1.0 to 1.5. In corrosion test, the anodic polarization characteristics were measured in a 3.5% NaCl solution at room temperature to examine the corrosion resistance. The potentiodynamic polarization measurements showed that for all the multilayer films the corrosion potential shift to higher values, and the corrosion current density decreased with increasing of nitrogen gas flow rate, which indicate a higher nitrogen partial pressures lead to a better corrosion resistance.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3