Thermoelectric Properties of Al Doped ZnO Thin Films Fabricated through Inkjet Printing

Author:

Lim J.H.1

Affiliation:

1. Taylor’s University

Abstract

The effects of Al doping to the thermoelectric properties of ZnO thin films fabricated through ink-jet printing were studied in this paper. Ink-jet printing was used to deposit the Al doped ZnO thin films. A minimum of 50 print cycles was required to obtain continuous film with approximately 9 μm thick thin films. It was possible to obtain high thermoelectric properties of ZnO by controlling the ratios of dopant added and the temperature of the heat treatments.The XRD traces of Al doped ZnO exhibit a polycrystalline hexagonal structure for the wurtzite phase of ZnO. There were no additional phase detected for Al doped ZnO thin films with increasing amount of Al dopants and heat treatment temperature. The results show Al doping had improved the thermoelectric properties of ZnO with an increased in electrical conductivity. The electrical conductivity of pure ZnO thin film (5 S/cm) was enhanced with increasing the dopant to 4wt% Al doped ZnO (114 S/cm). Negative Seebeck values were observed for all the samples that indicated n-type semiconductor. Pure ZnO samples have a measured Seebeck coefficient-17.63 μV/K decreased to-14.35 μV/K with 4 wt% Al doped.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Life cycle analysis of thermoelectric generator efficiency for waste heat recovery;13TH INTERNATIONAL ENGINEERING RESEARCH CONFERENCE (13TH EURECA 2019);2020

2. The effect of temperature mismatch on interconnected thermoelectric module for power generation;13TH INTERNATIONAL ENGINEERING RESEARCH CONFERENCE (13TH EURECA 2019);2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3