Modgil-Virk Formulation of Single Activation Energy Model of Radiation Damage Annealing in SSNTDs: A Critical Appraisal

Author:

Virk Hardev Singh1

Affiliation:

1. SGGS World University

Abstract

Passage of heavy ions produces radiation-damage trails known as latent tracks in a variety of solid-state nuclear-track detectors (SSNTDs). These tracks are made visible in an optical microscope by a simple process known as chemical etching. It is a well-known fact that latent tracks are radiation damage trails in SSNTDs, which can be annealed by thermal heating. Modgil-Virk formulation of single-activation-energy model of radiation damage annealing was proposed as an empirical approach for explaining the thermal fading of nuclear tracks in SSNTDs. The empirical formulation of this model is based on track annealing data collected from both isothermal and isochronal experiments performed on different types of SSNTDs using a variety of heavy ion beams and fission fragments. The main objective of this empirical model was to resolve some contradictions of variable activation energy derived by using Arrhenius plots to study annealing in mineral SSNTDs. Some equivalent versions of the Modgil-Virk model have been proposed but the concept of single activation energy is vindicated in all empirical formulations. The model always yields a unique value of activation energy independent of the nature of the ion beam used and the degree of annealing. The anisotropy of the mineral SSNTDs is revealed by variation in activation energy along different crystal planes and even with different orientations of the ion beam on the same plane. Some recent experiments are a pointer to the successful exploitation of this model for future cosmic-rays studies using SSNTDs.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Thermal Annealing of Ion Tracks;Ion Tracks in Apatite and Quartz;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3