The Empirical Assessment of the Convergence Rate for the Bootstrap Estimation in Design of Experiment Approach

Author:

Osocha Przemysław1,Ulewicz Robert2,Szataniak Paweł3,Pietraszek Mariusz4,Kołomycki Maciej1,Radek Norbert5,Pasieczyński Łukasz6

Affiliation:

1. Cracow University of Technology

2. Czestochowa University of Technology

3. WIELTON S.A.

4. Air Force Institute of Technology

5. Kielce University of Technology

6. Firma Handlowa Barwa

Abstract

Design of experiment (DoE) is a set of practical recipes and theoretical assumptions leading to the optimization of the technological process and/or the stabilization of its output quality. Practically, all the DoE approaches assume the normality of a random noise and the quasi-linearity of models taken from the general linear model (GLM) class. It allows to use traditional least-square methodology to identification of a model parameters and their confidence intervals. It gives usually sufficient results but completely fails if the model is not from GLM class or a random noise has not a normal distribution. The solution for such problems is the bootstrap approach, a resampling method based on Monte Carlo strategies. This paper tries to answer a question how many repetitions should be made to estimate parameters of the prediction model with sufficient accuracy.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Reference41 articles.

1. O. Kempthorne, K. Hinkelmann, Design and analysis of experiments. Vol. 1. Introduction to experimental design, John Wiley & Sons, Hoboken, NJ, USA, (2007).

2. M.D. Grigoriu, Stochastic Systems - Uncertainty Quantification and Propagation, Springer-Verlag London Ltd., London, (2012).

3. O. Christensen, K.L. Christensen, Approximation Theory - From Taylor Polynomials to Wavelets, Springer-Science+Business Media, New York, (2005).

4. W. Feller, An Introduction to Probability Theory and Its Applications, John Wiley & Sons, Hoboken, (1968).

5. D.C. Montgomery, Design and Analysis of Experiments, John Wiley & Sons, Inc., Hoboken, (2008).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3