Conductivity Characterizationof Iron Oxide Doped 8 mol% Yttria Stabilized Zirconia

Author:

Selvaraj Tinesha1,Banjuraizah Johar2,Khor S.F.3,Mohd Zainol M.N.4

Affiliation:

1. University Malaysia Perlis

2. Universiti Malaysia Perlis

3. Universiti Malaysia Perlis (UniMAP)

4. Adtec Taiping, Kamunting Raya

Abstract

A facile strategy was proposed to incorporate the dopant Fe into 8YSZ-based material, which can be potentially applied as solid electrode materials for Solid Oxide Fuel Cells (SOFC). In this study, 8YSZ powder was investigated in terms of densification, conductivity and thecrystal structure as a solid electrolytes. Therefore, varying mol% of Fe included 1, 2, and 3 were prepared for investigation. The crystalline structure of the pristine and Fe doped samples were characterized by X-ray diffraction (XRD) and the phase contents were evaluated by using the Rietveld method. Rietveld quantitative phase analysis demonstrates that the monoclinic-ZrO2phase increases (12.8 wt% to 39.7 wt%) as the concentration of Fe increases, while the amount of tetragonal-ZrO2phase drop (40.4 wt% to 11.9 wt%) dramatically. Sintering activity was applied to improve incorporation of the 8YSZ powder and the dopant Fe where the relative density increases from 77% to 92%. Sample YSZ-2Fe has been fitted with CPE equivalent circuit and achieved 6.251 x 10-6S/cm at 300 °C in air. However, it was found that conductivity levels decreased as the mol% of Fe increased. In short, sample YSZ-2Fe ceramic demonstrated good results in terms of densification (92.09%), cubic ZrO2phase (22 wt%) and conductivity 6.251 x 10-6S/cm.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3