Hafnium Modified Aluminide Coatings Obtained by the CVD and PVD Methods

Author:

Zagula-Yavorska Maryana1,Romanowska Jolanta1,Sieniawski Jan1,Wierzbińska Małgorzata1

Affiliation:

1. Rzeszow University of Technology

Abstract

Zirconium, hafnium or platinum modification of NiAl phase increases the oxidation resistance of diffusion aluminide coatings. Small hafnium addition to aluminide coatings decreases the oxidation rate of nickel superalloys at 1100 °C.The paper presents comparison of structures of hafnium modified aluminide coatings deposited in two different ways on pure nickel. In the first way double layers of hafnium 3 μm thick and aluminum 3 μm thick were deposited by the EB-PVD on the nickel substrate. The double layers were subjected to diffusion treatment at 1050 °C for 6 h and 20 h. In the second method, a hafnium layer was deposited by the EB-PVD method, whereas aluminum was deposited by the CVD method. The obtained coatings were examined by the use of an optical microscope (microstructure and coating thickness) and a scanning electron microscope (chemical composition on the cross-section of the modified aluminide coating). Microstructures and phase compositions of coatings obtained by different methods differ significantly. Diffusion treatment for 6 h leads into formation of the Ni5Hf phase. The elongation of the diffusion time from 6 to 20 h decrease the volume fraction of the Ni5Hf phase. An aluminide coating deposited by the CVD method at 1050 °C at the nickel substrate with prior hafnium layer (3 μm thick) has a triple zone structure. An outer zone consists of the NiAl phase, a middle zone consists of the Ni3Al phase, and the Ni(Al) phase forms an inner zone, close to the substrate. An NiHf intermetallic phase is between the outer and the middle zone, whereas Ni3Hf is between the inner zone and the substrate.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3