Affiliation:
1. King Fahd University of Petroleum and Minerals
2. University of Limerick
Abstract
The development of SiAlON-based ceramics has shown great impact in the field of cutting/drilling tool industry and other engineering applications. It is highly desirable to cut-down the cost of the cutting tools by increasing their service lifetime. Potential ways to improve tool life is by preparing these SiAlON-based ceramics adopting non-conventional synthesis routes and by using different precursors. The present study reports the results of synthesis of SiAlON-based nano-ceramics via spark plasma sintering (SPS) technique. Generally, metal nitride and metal oxide precursors are used for synthesizing self-reinforced SiAlON ceramics. In this work, nano-sized metallic precursors including amorphous-Si3N4 and crystalline β-Si3N4, SiO2, AlN and Al2O3 were used, which could be a novel way to synthesize SiAlONs at low temperatures with enhanced performance. The properties of these SiAlONs are tailored by optimizing the synthesis parameters. The synthesized samples were characterized by X-ray diffraction and field emission scanning electron microscopy to study the effect of processing parameters on microstructure, density and hardness.
Publisher
Trans Tech Publications Ltd
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献