Affiliation:
1. National Institute of Advanced Industrial Science and Technology (AIST)
2. SHOWA DENKO K.K.
Abstract
The epitaxial growth of ~250 μm thick 4H-SiC epilayers has been demanded for ultra-high-voltage power devices. We have attempted to improve the quality of thick epilayers. At the edge of wafer, stacking faults, epi-crown and interfacial dislocations could be well suppressed by controlling the distribution of growth rate. Investigation of carrier concentration depth profile revealed that increasing surface roughness increased the carrier concentration during thick epitaxial growth. Under N2-doped growth condition, memory effect by accumulation of by-products containing dopant element is also one of the reasons of the carrier concentration increasing during the growth.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献