Tool Life Prediction Model Based on GA-BP Neural Network

Author:

Zhang Zheng1,Li Liang1,Zhao Wei1

Affiliation:

1. Nanjing University of Aeronautics and Astronautics

Abstract

In order to improve the working efficiency of a manufacturing system, tool life estimation is very essential. In this paper, the dominant factors affecting tool life are analyzed by theoretical analysis. According to the nonlinear relationship between affecting factors and tool life, a tool life prediction model based on BP neural network, which is optimized by genetic algorithm (GA), is built up. 15 network patterns are trained to get the best network structure. The accuracy of GA-BP model is verified through computing and compared with the standard BP model. The results show that GA-BP model prediction value is exactly closed to the expected value of tool life and the prediction accuracy can be improved more than 5% compared than the standard BP model. The model is proved to be accuracy and it can be used as an effective method of tool selection decision.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on Evaluation and Prediction Method of Electrical Life of Contactor Individual;IEEJ Transactions on Electrical and Electronic Engineering;2024-05-29

2. Research on the Remaining Life Prediction Method of Rolling Bearings Based on Optimized TPA-LSTM;Machines;2024-03-27

3. Improved Hybrid Attention Learning System for Remaining Useful Life Prediction;2023 42nd Chinese Control Conference (CCC);2023-07-24

4. Overview of titanium alloy cutting based on machine learning;The International Journal of Advanced Manufacturing Technology;2023-04-29

5. Temporal Knowledge Graph Informer Network for Remaining Useful Life Prediction;IEEE Transactions on Instrumentation and Measurement;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3