Affiliation:
1. National Research University
Abstract
The different approaches were analyzed to investigate the buckling problems of structurally-anisotropic panels made from composite materials. Aircraft composite structure design in the field of production technology is the outlook research trend. New mathematical model relations for the buckling investigation of structurally-anisotropic panels comprising composite materials are presented in this study. The primary scientific novelty of this research is the further development of the theory of thin-walled elastic ribs related to the contact problem for the skin and the rib with an improved rib model. One considers the residual thermal stresses and the preliminary tension of the reinforcing fibers with respect to panel production technology. The mathematical model relations for the pre-critical stressed state investigation of structurally-anisotropic panels made of composite materials are presented. Furthermore, the mathematical model relations for the buckling problem investigation of structurally-anisotropic panels made of composite materials are presented in view of the pre-critical stressed state. The critical force definition of the general bending form of the thin-walled system buckling and the critical force definition of the many-waved torsion buckling are of the most interest in accordance with traditional design practices. In both cases, bending is integral with the plane stress state. Thus, the buckling problem results in the boundary value problem when solving for the eighth order partial derivative equation in the rectangular field. The schematization of the panel as structurally-anisotropic has been proposed as a design model when and the critical forces of total bending form of buckling are determined. For a many-waved torsion buckling study, one should use the generalized functions set. The solution is designed by a double trigonometric series and by unitary trigonometric series. A computer program package is developed using the MATLAB operating environment. The computer program package has been utilized for multi-criteria optimization of the design of structurally-anisotropic aircraft composite panels. The influence of the structure parameters on the level of critical buckling forces for bending and for torsion modes has been analyzed. The results of testing series are presented.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Aircraft composite structures integrated approach: a review;Journal of Physics: Conference Series;2021-05-01
2. Parametric Optimization of the PCM Caisson Structural Strength Elements;Proceedings of the International Conference on Aerospace System Science and Engineering 2020;2021