Characterization of Inhomogeneity in Thermal Oxide SiO2 Films on 4H-SiC Epitaxial Substrates by a Combination of Fourier Transform Infrared Spectroscopy and Cathodoluminescence Spectroscopy

Author:

Yoshikawa Masanobu1,Inoue Keiko1,Sameshima Junichiro1,Seki Hirohumi1

Affiliation:

1. Toray Research Center Inc.

Abstract

We measured Fourier transform infrared (FT-IR) and cathodoluminescence (CL) spectra of SiO2 films with a various thickness, grown on 4H-SiC substrates. The peak frequency of the transverse optical (TO) phonon mode was blue-shifted by about 5 cm−1 as the oxide-layer thickness decreased from 50-60 nm to 10 nm. The blue shift of the TO mode is considerd to be caused by interfacial compressive stresses in the oxide-layer. On the other hand, the TO phonon mode was found to dramatically decrease as the oxide-layer thickness decreased from 10 nm to 1.7 nm. The CL measurement indicates that the intensity of the CL peaks at about 460 and 490 nm attributed to oxygen vacancy centers (OVCs) for No.2 become stronger than that for No.1. From a comparison between FT-IR and CL measurements, we concluded that the red-shift of the TO phonon with decreasing the oxide-layer thickness can mainly be attributed to an increase in inhomogeneity at the SiO2/SiC interface with decreasing oxide-layer thickness.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Topics;Advanced Optical Spectroscopy Techniques for Semiconductors;2023

2. Stress Characterization of the Interface Between Thermal Oxide and the 4H-SiC Epitaxial Layer Using Near-Field Optical Raman Microscopy;Applied Spectroscopy;2019-07-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3