Recent Nanofabrication of Silicon Dioxide on Silicon Wafer Using AFM Operated at Low Temperature

Author:

Sutjipto Agus Geter Edy1,Afzeri 1,Shafie Amir Akramin2

Affiliation:

1. International Islamic University Malaysia (IIUM)

2. International Islamic University Malaysia

Abstract

Field-induced oxidation has become a promising process that is capable of directly producing high-resolution surface oxide patterns on variety materials. This report initiated the idea of the possibility of a controlled nanofabrication of SiO2 on silicon wafer by utilizing a frozen humid air film. A low temperature (-70°C) operation of an atomic force microscope (AFM) was used to condense ambient humidity (40%) to perform a thin frozen water layer covering a silicon wafer surface. A scanning probe was contacted with the layer and a zero bias voltage was applied to the sample surface with the AFM probe tip connected to the reference -2.44V. The frozen water film acted both as an electrolyte to form silicon dioxide and as a resource of hydroxide. Using this technique (a) a consistency in height of 6 nm silicon dioxide patterns layer could be achieved showing that the effect of tip vibration could be reduced; (b) easy to remove frozen water by just operating the AFM to the ambient temperature; (c) it is possible to control thickness by making different humidity.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3