Optimisation of Header of a Compact Radiator

Author:

Roy Subhadip1,Vamsi Krishna C.S.1,Ganesh N.1,Kumarasamy A.1

Affiliation:

1. Combat Vehicles Research and Development Establishment

Abstract

The performance of a Plate fin radiator in terms of heat transfer rate and coolant side pressure drop depends significantly on the distribution of coolant through its passages. Uneven flow through the passages i.e. flow maldistribution, can cause local hot spots in the radiator due to high coolant flow in some passages. The flow maldistribution among the passages can be reduced to a large extent by proper optimisation of the header. The present paper investigates the method to optimise the header of a 680 kW radiator to reduce the maldistribution in its passages using Computational Fluid Dynamics (CFD). The analysis was simplified by considering the porous media instead of simulating the exact fin configuration in the radiator. The maximum and absolute values of flow maldistribution factor were considered in this study to determine the effectiveness of the header with respect to flow maldistribution. The flow maldistribution factor was determined based on the individual velocity of coolant in a passage and the average velocity of coolant in all the passages. The methods used for optimisation were rounding the header inlet, tapering the header partially, changing the position of the taper and modifying the end portion of the header. In this paper two parameters, viz., flow maldistribution parameter and absolute maldistribution parameter were considered to measure the maldistribution of a radiator. Due to these optimisations in the header, the maximum and absolute values of maldistribution reduced up to 18% and 45% respectively.

Publisher

Trans Tech Publications, Ltd.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3