Thermo Mechanical Analysis of SS304 Circular Grid Plate Hard Faced with Colmonoy

Author:

Balaguru S.1,Shashi Kumar1,Vela Murali1,Chellapandi P.2

Affiliation:

1. Anna University

2. IGCAR

Abstract

In this paper, plasma transfer arc welding using hard faced material Colmonoy which is deposited on a annular groove of a circular grid plate made up of SS 304 was studied. Hard face deposition made by Plasma Transferred Arc Welding (PTAW) on a annular groove of a grid plate at relatively high temperature, generates residual stresses due to differential shrinkage of the molten deposit, process-induced thermal gradients and difference in coefficients of thermal expansion between the colmonoy deposit and base material SS 304. However, the magnitude and distribution of the residual stresses vary depending on the heat input, deposition process, and the geometry of the component. Finite element analysis of residual stress is performed with commercial FEA package of ANSYS 12.0 which includes moving heat source, material deposit, temperature dependent material properties, metal plasticity and elasticity. Coupled thermo-mechanical analysis is done for welding simulation and the element birth and death technique is employed for simulation of filler metal deposition. Finally residual stress is evaluated so that annealing is performed accordingly to relieve residual stresses in order to carry out fracture analyses thereafter.

Publisher

Trans Tech Publications, Ltd.

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evaluation of Ultraviolet Radiation using the MOORA Method;Aeronautical and Aerospace Engineering;2024-01-13

2. Condition of Ground Water Quality in Relation to Pollution in Krishnagiri District Taluk, TamilNadu;Building Materials and Engineering Structures;2024-01-12

3. Future Technology Development Using VIKOR Method;Computer Science, Engineering and Technology;2024-01-11

4. Residual Stress Map for 75Ni13.5Cr2.7B-3.5Si Clad 316 Stainless Steel;Procedia Structural Integrity;2024

5. Development and Numerical validation of an Aerospike nozzle Contour Design;MATEC Web of Conferences;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3