Sensor Fusion for Condition Monitoring System of End Milling Operations

Author:

Abbas Jabbar1,Al-Habaibeh Amin1,Su Dai Zhong1

Affiliation:

1. Nottingham Trent University

Abstract

This paper describes the utilisation of multi sensor fusion model using force, vibration, acoustic emission, strain and sound sensors for monitoring tool wear in end milling operations. The paper applies the ASPS approach (Automated Sensor and Signal Processing Selection) method for signal processing and sensor selection [1]. The sensory signals were processed using different signal processing methods to create a wide range of Sensory Characteristic Features (SCFs). The sensitivity of these SCFs to tool wear is investigated. The results indicate that the sensor fusion system is capable of detecting machining faults in comparison to a single sensor using the suggested approach.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Review of advances in tool condition monitoring techniques in the milling process;Measurement Science and Technology;2024-06-06

2. Monitoring the condition of the cutting tool using self-powering wireless sensor technologies;The International Journal of Advanced Manufacturing Technology;2016-06-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3