Abstract
Coarse grains of commercial 5052 Al and 5083 Al alloys were refined by the accumulative roll bonding (ARB) process. Average grain size of the refined microstructure was 200 nm. The 5083 Al alloy that has higher Mg content required more deformation for the refinement. Dry sliding wear behavior of the ultra-fine grained (UFG) Al alloys was investigated using a pin-on-disk wear tester at
room temperature. The UFG microstructure of the processed alloys hardly increased the wear resistance of the Al alloys in spite of the increased strength and hardness. Wear rate of the UFG Al alloys was higher than that of the non processed coarse-grained starting alloys. The SEM observation of worn surfaces revealed that surface deformation controlled the wear. The low wear resistance of
the UFG Al alloys was attributed to non-equilibrium and unstable grain boundaries and low strain hardening capability of the alloys.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献