Structure Optimization on High-Speed Electromagnetic Repulsion Mechanism

Author:

Dong En Yuan1,Liu Mei Wei1,Li Zhi Bing2,Yan Xiang Lian2,Chen Yu Shuo1

Affiliation:

1. Dalian University of Technology

2. China Electric Power Research Institute

Abstract

High speed mechanical switches are gradually becoming a research hotspot in power systems, for its fast switching speed, large conduction flow and voltage-withstanding. Among them, the core design of the switches focuses on optimal design of the structure of repulsion actuator. Besides traditional factors like coil turns, capacitance, voltage, which affect the output power, the material and structure of coil frame, the enclosure of repulsion mechanism are found to be important factors in this paper. Based on finite element analysis and simulation of repulsion mechanism, a novel prototype was designed, and the simulation results were verified by experiments. Moreover, during opening process of switch, the repulsion mechanism coupled with either assistant spring or assistant opening coil in permanent magnetic actuator (PMA) are compared by experiments. The results show that the switch has smaller opening oscillation and simpler structure through using assistant opening coil. This paper has provided a better guidance for the development of high-speed repulsion mechanism in interrupters.

Publisher

Trans Tech Publications, Ltd.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Survey of Hybrid Circuit Breakers: Component-Level Insights to System-Wide Integration;IEEE Open Journal of Power Electronics;2024

2. Effect of capacitance parameters on the performance of fast repulsion mechanism;2022 4th International Conference on Artificial Intelligence and Advanced Manufacturing (AIAM);2022-10

3. A Review on Thomson Coil Actuators in Fast Mechanical Switching;Actuators;2022-06-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3