Text Classification Using SVM with Exponential Kernel

Author:

Chen Jun Ting1,Zhong Jian1,Xie Yi Cai1,Cai Cai Yun1

Affiliation:

1. Gannan Normal University

Abstract

Text classification presents difficult challenges due to the high dimensionality and sparsity of text data, and to the complex semantics of the natural language. Typically, in text classification the documents are represented in the vector space using the Bag of words (BoW) technique. Despite its ease of use, BoW representation does not consider the semantic similarity between words. In this paper, we overcome the shortage of the BoW approach by applying the exponential kernel, which models semantic similarity by means of a diffusion process on a graph defined by lexicon and co-occurrence information, to enrich the BoW representation. Combined with the support vector machine (SVM), experimental evaluation on real data sets demonstrates that our approach successfully achieves improved classification accuracy with respect to the BoW approach.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3