Processing of Aluminium Alloys by Severe Plastic Deformation

Author:

Langdon Terence G.1

Affiliation:

1. University of Southampton

Abstract

Processing through the application of severe plastic deformation (SPD) has become important over the last decade because it is now recognized that it provides a simple procedure for producing fully-dense bulk metals with grain sizes lying typically in the submicrometer range. There are two major procedures for SPD processing. First, equal-channel angular pressing (ECAP) refers to the repetitive pressing of a metal bar or rod through a die where the sample is constrained within a channel bent through an abrupt angle at, or close to, 90 degrees. Second, high-pressure torsion (HPT) refers to the procedure in which the sample, generally in the form of a thin disk, is subjected to a very high pressure and concurrent torsional straining. Both of these processes are capable of producing metallic alloys with ultrafine grain sizes and with a reasonable degree of homogeneity. Furthermore, the samples produced in this way may exhibit exceptional mechanical properties including high strength at ambient temperature through the Hall-Petch relationship and a potential superplastic forming capability at elevated temperatures. This paper reviews these two procedures and gives examples of the properties of aluminum alloys after SPD processing.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference34 articles.

1. E.O. Hall, Proc. Roy. Soc. B 64 (1951), p.747.

2. N.J. Petch, J. Iron Steel Inst. 174 (1953), p.25.

3. T.G. Langdon, Metall. Trans. 13A (1982), p.689.

4. Y.T. Zhu, T.C. Lowe and T.G. Langdon, Scripta Mater. 51 (2004), p.825.

5. H. Gleiter, Prog. Mater. Sci. 33 (1989), p.223.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3