Laser Weldability of Aluminum Alloy and Steel

Author:

Katayama Seiji1,Joo Sung Min2,Mizutani Masami1,Bang Han Sur3

Affiliation:

1. Osaka University

2. RIST Research Institute of Industrial Science and Technology

3. Chosun University

Abstract

With the intention of improving butt or lap joint of dissimilar materials, specially devised weld beads together with lap and butt-joints were produced between A5052 and SPCC, where A5052 butt-joint was melted by heat-conduction of SPCC weld bead in addition to the formation of a limited weld fusion zone at the lap part in A5052 alloy. The thickness of intermetallic compounds at the butt-joint interface was approximately 2 μm and free of cracks. It was also revealed that crack-free lap weld metals were formed between aluminum alloy and steel when the penetration was controlled to be of less than 0.3 mm in depth at small heat input. It was moreover found that the majority of a laser weld fusion zone solidified as alpha(bcc)-iron phase containing small amount of aluminum, and cracks were absent in the case of hard intermetallic (AlxFey type) layer of less than 10μm zone. It was confirmed that a weld with lap and butt joints possessed high strength (leading to the load 3500 N to 4,380 N for 40 mm width specimen). In addition, SPCC and A1100 or A5052 were subjected to lap welding with a cw YAG laser, where one to three passes were performed to produce wider bonded areas. Dissimilar steel and aluminum joints with good mechanical properties were obtained, since the fracture occurred in the aluminum alloy base metal in the tensile test. It is concluded that welded joints of high strength can be produced between aluminum alloy and steel with proper devices.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference4 articles.

1. S. Katayama, et al.: Proc. 5th Int. Conf. on TRENDS IN WELDING RESEARCH, Georgia, June (1998), pp.467-472.

2. G. Sepold, et al.: Lisbon, (1999), IIW Doc. IV-734-99.

3. E. Schubert, et al.: Proc. ICALEO '98, Orlando, Nov., Vol. 85, Section G (1998), pp.111-120.

4. F. Wagner, et al.: Proc. ICALEO 2001, Jacksonville, (2001), Section C1301(CD).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3