The Effect of Ca-Rich Deposits on the High Temperature Degradation of Coated and Uncoated Superalloys

Author:

Jung Kee Young1,Pettit Frederick S.1,Meier Gerald H.1

Affiliation:

1. University of Pittsburgh

Abstract

When gas turbines use alternate fuels, such as syngas derived from coal, ash from the fuels can deposit on turbine hardware. These deposits can cause substantial corrosion of the hardware which may have significantly different characteristics than Type I and Type II hot corrosion. The composition of the ash is determined by the mineral matter in coals, which often have kaolinite (Al2O3·2SiO2·2H2O), pyrites (FeS2), and calcites (CaCO3) as major components. This study was directed at degradation produced by CaO and CaSO4 and comparing it with the attack induced by Na2SO4 deposits. The alloys GTD 111, IN 738, and René N5, as well as these alloys coated with CoNiCrAlY and platinum aluminide, were exposed to conditions relevant to corrosion induced using alternative fuels. The initial test conditions involved a number of deposits including Na2SO4, CaO, and CaSO4 in dry and wet (pH2O = 10.1 kPa, 0.1 atm) air at 950oC. The most severe degradation occurred with CaO deposits. Specimens of the three alloys were subsequently exposed to cyclic oxidation conditions at 950oC with deposits of CaO in dry and wet air. All three alloys were attacked more severely when CaO deposits were present and this attack became even more severe in wet compared to dry air. However, the increase in attack caused by the presence of water vapor was small compared to the attack caused by the CaO deposits. The degradation induced via CaO deposits caused more severe degradation of René N5 compared to GTD 111 and IN 738. Tests using CaO deposits and cyclic oxidation conditions at 950oC in dry and wet air were also performed for the two coatings on the three alloy substrates. Both coatings were significantly degraded by attack induced by the CaO deposits. No effect of the alloy substrates on coating performance was apparent. Mechanisms for the effects of Ca-rich deposits on superalloy and coating degradation are discussed.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3