Characterisation of Niobium Carbide and Carbonitride Evolution within Ferrite: Contribution of Transmission Electron Microscopy and Advanced Associated Techniques

Author:

Courtois Eglantine1,Epicier Thierry1,Scott Colin2

Affiliation:

1. Université de Lyon

2. Arcelor Research

Abstract

Niobium is a strong carbide forming element which is often used in microalloyed steels to control the grain size during thermomechanical treatments and to provide strengthening through precipitation processes. A detailed microscopic investigation is one of the keys for understanding the first stages of the precipitation sequence, thus Transmission Electron Microscopy (TEM) is required. The main difficulty of TEM studies is due to the nanometre scale dimensions of the particles, which makes their detection, structural and chemical characterization delicate. Model Fe- (Nb0.06%,C0.05%) and Fe-(Nb0.05%,C0.03%,N0.03%) ferritic alloys subjected to isothermal annealing treatments have been investigated. High Resolution TEM (HRTEM) and conventional TEM (CTEM) were used to characterise the morphology, nature and location of precipitates. Volume fraction measurements and a statistical approach to the determination of precipitate size histograms have been investigated using Energy Filtered TEM (EFTEM) and High Angle Annular Dark Field (HAADF) imaging. Chemical compositions were quantified by Electron Energy Loss Spectroscopy (EELS). The evolution of precipitate composition with time and temperature is compared with previous simulations obtained from new thermodynamic models based on equilibrium boundary conditions.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3