Affiliation:
1. Carnegie Mellon University
2. Alcoa Tchnical Corporation
Abstract
A model has been constructed for the microstructural evolution that occurs during the annealing of aluminum alloys. Geometric and crystallographic observations from two orthogonal sections through a polycrystal using automated Electron Back-Scatter Diffraction (EBSD) were used as an input to the computer simulations to create a statistically representative threedimensional model. The microstructure is generated using a voxel-based tessellation technique. Assignment of orientations to the grains is controlled to ensure that both texture and nearest neighbor relationships match the observed distributions. The microstructures thus obtained are allowed to evolve using a Monte-Carlo simulation. Anisotropic grain boundary properties are used in the simulations. Nucleation is done in accordance with experimental observations on the likelihood of occurrences in particular neighborhoods. We will present the effect of temperature on the model predictions.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献