A Model and Simulated Analysis for Reliability and Failure in MEMS Fabrication

Author:

Malik M.Rizwan1,Shi Tie Lin2,Tang Zi Rong1,Liu Shi Yuan3,Haseeb M.1

Affiliation:

1. Huazhong University of Science and Technology (HUST)

2. Wuhan National Laboratory for Optoelectronics

3. Huazhong University of Science and Technology

Abstract

Engineering medical applications are enriched by the fabrication potential of the growing technology of Micro-Electro-Mechanical Systems (MEMS). Within this technological expansion, device manufacturing costs, failure and long-term performance reliability are critical issues that have to be resolved using basic probabilistic design methodologies which are yet largely unexploited by industrial and service companies at the mature innovation level. Modeling and testing of high-performance MEMS is a promising route, based upon these methodologies, to enhancing reliability and preventing surface failure. In this paper, we focus on the modeling of the mechanical properties of MEMS, as exemplified by a capacitive accelerometer, using probabilistic techniques. The accuracy of these techniques is also evaluated for the accelerometer with regard to those parameters that affect mainly reliability and failure. The simulated analysis of the mechanical properties is performed with easy-to-use probabilistic software known as “NESSUS”. It is concluded that probabilistic design methodologies are very effective and balanced for making design decisions that can, with both reliability and ease, ensure component or system efficiency.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3