Local Density Diffusivity (LDD-) Model for Boron Out-Diffusion of In Situ Boron-Doped Si0.75Ge0.25 Epitaxial Films Post Advanced Rapid Thermal Anneals with Carbon Co-Implant

Author:

Wirbeleit Frank1

Affiliation:

1. GLOBALFOUNDRIES

Abstract

Boron in silicon has presented challenges for decades because of clustering and so-called transient enhanced diffusion [1-2]. An understanding of boron diffusion post rapid thermal annealing in general, and out of in situ doped epitaxially grown silicon-germanium films in particular, is essential to hetero junction engineering in microelectronic device technology today. In order to model boron diffusion, post-implantation, the local density diffusion (LDD) model has been applied in the past [3]. Via mathematical convolution of the diffusion model slope and the initial boron concentration profile, these former results were transferred to this work. In this way, non-diffusing boron was predicted to exist in the center of the presented in situ boron-doped films. In addition, boron diffusion control by co-implanted carbon was demonstrated and the applied LDD model was completed and confirmed by adapting A. Einstein’s proof [4] for this purpose.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3