Affiliation:
1. Federal University of technology Akure
Abstract
This study extends previous investigation on ohmic heating of magnetohydrodynamic viscous fluid flow over a continuous moving plate to include radiative heat-loss, viscous dissipation and buoyancy effects. The mathematical formulation representing the modified physical model involves a system of three partial differential equations, which are transformed into a system of two coupled non-linear ordinary differential equations using suitable dimensionless variables. Thereafter, the resulting dimensionless system of equations governing modified model are solved via Homotopy Analysis Method (HAM). The accuracy and convergence of solutions are validated by comparing the results obtained with those in literature and they are in good agreement. Parametric study is performed to illustrate the effects of emerging parameters on fluid velocity and temperature, skin friction coefficient and Nusselt number. It is found that the impacts of pertinent parameters due to the extensions are significant and these are presented in graphs and tables. The results indicate that the skin friction coefficient and the heat transfer rate increase with the increasing values of thermal radiation and decrease with the increasing value of viscous dissipation parameter.
Publisher
Trans Tech Publications, Ltd.
Subject
Condensed Matter Physics,General Materials Science,Radiation
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献