Numerical Study of the Characteristics of Rotary Spool Orifice in Water Hydraulics

Author:

Wu Jin Jun1,Yang You Sheng2,Li Jing Yuan3,Yu Ge Gang2,Jiao Zong Xia1

Affiliation:

1. Beijing University of Aeronautics and Astronautics

2. State Oceanic Administration

3. 705th Research Institute Kunming

Abstract

The rotary control orifice, in which the relative angular openings are adjusted by the rotary motion of the spool, thus controlling the flow area and the flow passing through, is a basic control element of hydraulic control valve. It has several advantages, such as little minimal steady flow rate, good anti-contamination, small driving power, small opening and shutting shock, and etc., over the translational control orifice. The working medium is tap water. A model is developed and numerical studies are carried out to investigate the hydrodynamic characteristics of the rotary control orifice, including flow and pressure field, flow characteristics, flow torque. The relationships between the flow and the pressure drops, the efflux angle and the angular openings, the steady-state flow torque and the pressure drops as well as the angular openings are obtained. The results show that a) the orifice geometries have great effects on the efflux angle and the steady-state flow torque; b) Under the same openings and flow direction, the efflux angle is almost constant under different pressure drops. It is larger for meter-in flow than for meter-out flow and decreases with the increase of openings; c) The steady-state flow torque (including meter-in flowTsfinand meter-out flowTsfout) is proportional to the pressure drops and first increases and then decreases with the increase of openings, finally reaches zero at the fully opened position; d) The friction moment is proportional to the rotary speed so as the transient flow induced moment to the rotary acceleration. The in-depth study of the drag moment of rotary control orifice helps to design high performance rotary servo valve for robots. The in-depth study of the rotary control orifice provides a basis for developing high performance rotary control valve.

Publisher

Trans Tech Publications, Ltd.

Reference27 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3