A Novel Control Scheme for Power Factor Improvement in Modified Bridgeless Boost Converter

Author:

Annamalai Tamizhselvan1,Rajini V.2

Affiliation:

1. SSN College of Engineering

2. SSN College of Engineering

Abstract

In Green Energy technologies like wind energy conversion systems and Domestic applications like SMPS and UPS systems, the input voltage amplitude and input frequency are time varying in nature. Fast-Escalating and extremely challenging high efficiency requirements for AC-DC power supplies for notebooks, desktop computers are to minimize the power losses (Conduction losses). In the conventional rectifiers power losses are more and power factor is poor resulting in loss of efficiency. Normally, the bridgeless topologies, also referred to as dual boost power factor correction (PFC) rectifiers, may reduce the conduction losses by reducing the number of semi-conductor components in the line current path. Power supply units have to make the load compatible with the source. The presence of non-linear load results in poor power factor operation and produces harmonic components in the line. So PFC techniques are necessary to meet harmonic regulations and standards such as IEC 61000-3-2 and IEEE 519. A modified bridgeless topology may be used for such applications. A novel switching controller is developed that regulates the input resistance to a desired value. Hence input power factor is unity and also the total harmonic distortion is controlled to a tolerable limit. In the proposed model, the modified bridgeless boost converter is activated in to a pure resistance mode. Finally the performance of the modified bridgeless boost converter is compared with the existing basic bridgeless boost converter.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3