Chromaticity Properties of Curcuminoids Dye Nanofibers Prepared by Electrospinning for White Light Down-Conversion

Author:

Al Shafouri M.1,Ahmed Naser Mahmoud1,Hassan Zainuriah1,Almessiere Munirah Abdullah2

Affiliation:

1. Universiti Sains Malaysia

2. Imam Abdulrahman Bin Faisal University

Abstract

In this study, the chromaticity properties of curcuminoids nanofibers were studied. Recent studies revealed that the nature of emitted light from curcuminoids and the poor stability which limits their illumination applications can be further improved using nanofibers and nanoparticles of curcuminoids. Motivated by this idea, we prepared some Poly(methyl methacrylate) (PMMA) integrated curcuminoids nanofibers via electrospinning. Poly(methyl methacrylate) (PMMA) were used in three types of concentration (5,10 and15wt%) which were mixed with (curcuma longa L.) powder to produce curcuminoids solution by using the centrifuge to separate the curcuminoids solution from the impurities. Different amounts of polymer solution mixed with curcuminoids (1 to 5ml) were spun by electrospinning to study its properties. The effect of annealing on samples was studied. The chromatic study of the samples and the effect of the amount and concentration of the solution were studied by pumping the samples in three different light emitting diode (LED) wavelengths (365, 390 and 445nm). The white light chromaticity coordinates (CIE), correlated color temperature (CCT) and color rendering index (CRI) were measured. The optimum CIE, CRI and CCT values of (X= 0.3051; Y= 0.3370), 64 and 6809K, respectively were obtained. By using field emission scanning electron microscope (FESEM) device, the curcuminoids nanofibers diameter was measured, where the values obtained ranged between 191 to 234nm. After the annealing process, curcuminoids nanoparticles average diameter 13-19 nm were obtained.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3