Energy-Saving Analysis and Heat Transfer Performance of Wastewater Source Heat Pump

Author:

Gu Ya Xiu1,Wang Tian1,Liu Wei1,Ma Feng Feng1

Affiliation:

1. Chang’an University

Abstract

There is a large potential in the heat loss from the urban wastewater. In all kinds of low-grade heat sources, urban wastewater is gradually widely used because of its advantages such as huge quantities, small variation of temperature, warm in winter and cool in summer, etc. By integrating a heat pump to utilize this heat, the wastewater source heat pump (WWSHP), which is a new water reuse and treatment strategy to tackle the water problems of China and to realize the sustainable development, recovers the heat of wastewater. The WWSHP air conditioning system as residential application can reduce the need of energy systems based on fossil fuel for cooling, heating, and hot water's supply purposes. The system's working principle, classification and the wastewater's characteristic parameters were discussed in this paper. And the scheme of using WWSHP system for central air-conditioning compared with other refrigerating and heating equipments was analyzed in detail. The investigation into COP (Coefficient of Performance) and PER (Primary Energy Ratio) was shown in this paper. Among the four kinds of common air conditioning units, when the loads are same respectively, the WWSHP has the most significant energy-saving effect. Furthermore, mechanism of heat transfer enhancement for falling-film evaporation and condensation surface of tubes packed with wire-mesh is also studied in detail. Theoretical simulation will be carried out for the heat transfer process and the flow of falling-film outside horizontal tubes. Improvement of controlling parameters influenced the evaporation and condensation performance, and then led to an increase in the refrigerating quantity and the COP. Consequently, this WWSHP system has its theoretical significance and promising engineering application potentials for the residential refrigerating and air-conditioning system using low-temperature waste heat source.

Publisher

Trans Tech Publications, Ltd.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3