Affiliation:
1. RMIT University
2. Defence Materials Technology Centre (DMTC)
3. Defence Science and Technology Organisation
Abstract
Today additive manufacturing is shaping the future of global manufacturing and is influencing the design and manufacturability of tomorrows products. With selective laser melting (SLM), parts can be built directly from computer models or from measurements of existing components to be re-engineered, and therefore bypass traditional manufacturing processes such as cutting, milling and grinding. Benefits include: 1) new designs not possible using conventional subtractive technology, 2) dramatic savings in time, materials, wastage, energy and other costs in producing new components, 3) significant reductions in environmental impact, and 4) faster time to market. SLM builds up finished components from raw material powders layer by layer through laser melting. SLM removes many of the shape restrictions that limit design with traditional manufacturing methods, thereby allowing computationally optimised, high performance structures to be utilised. Functional engineering prototypes and actual components can then be built in their final shape with minimal material wastage. Samples and small product runs can be produced quickly at comparatively low cost to test and build market acceptance without major investment. In this chapter we present and discuss some of the concepts and findings involved in the design, manufacture and examination of high-value aerospace components from Ti-6Al-4V alloy produced at the RMITs Advanced Manufacturing Precinct.
Publisher
Trans Tech Publications, Ltd.
Cited by
104 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献