Numerical Simulation of the Influence of Deposits on Heat Transfer Process in a Heat Recovery Steam Generator

Author:

Mu Lin1,Yin Hong Chao1

Affiliation:

1. Dalian University of Technology

Abstract

Flue gas entrains a large number of ash particles which are composed of alkali substances into the heat recovery steam generator (HRSG). The deposition of particles on the tube surface of heat transfer can reduce the heat transfer efficiency significantly. In the present work, an Eulerian- Lagrangian model based on Computational Fluid Dynamics (CFD) is implemented to simulation flue gas turbulent flow, heat transfer and the particle transport in the HRSG. Several User-Defined Functions (UDFs) are developed to predict the particle deposition/ rebounding as well as the influence of physical properties and microstructure of deposits on the heat transfer process. The results show that only after one day deposition, the total heat transfer rate reduces 27.68% compared with the case no deposition. Furthermore, the total heat transfer rate reduces to only 238.74kW after 30 days of continuous operation without any slag removal manipulation. Both numerical simulation and field measurement identify that the deposits play an important role in the heat transfer in the HRSG. Especially, when the deposits can’t be removed designedly according to the actual operating conditions, the HRSG experiences a noticeable decline in heat transfer efficiency due to continuous fouling and slagging on the tube surface.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3