Affiliation:
1. Université Hassan Premier
2. LMR
Abstract
Carbon nanotubes with polymers offers great advantages in improving material for both mechanical and electrical nanostructures. Design and fabrication have to consider that a local change in each compound accounts to the total change of physical properties in nanocomposite materials. This paper presents two parts of study. A model of strain nanosensor has been developed by using the polyvinylidne fluoride and trifluoroethylene P(VDF-TrFE) copolymer and carbon nanotubes in sandwich nanostructure [P(VDF-TrFE)/SWCNTs/ P(VDF-TrFE)] as a new application in nanotechnology domain. The experimental strain sensing was about 10-4. On the other hand, reliability-based optimization is assessed for an efficient tool to consider this nanosensors nanodevice. We put emphasis on the combination of physical modeling and reliability based design optimization of nanomaterials. After investigation, we could make suggestions such as how to improve the reliability of nanodevices and nanosystems, and how to reduce cost and economic rates.
Publisher
Trans Tech Publications, Ltd.