Sintering Shrinkage Anisotropy of Spherical Alumina Powder Compacts with Particle Orientation

Author:

Liu Yan Chun1,Shui An Ze1,Ren Xue Tan1,Zeng Ling Ke1

Affiliation:

1. South China University of Technology

Abstract

Spherical alumina powder and dispersant were mixed with distilled and deionized water, and ball milled to make alumina slurry. The slurry was dried in a high magnetic field to make a compact. Subsequently, the compact was cold-isostatic-pressed (CIP) to enhance the homogeneity in particle packing density. Anisotropy of shrinkage during sintering was examined for the alumina compacts in detail. Particle orientation existed in the spherical alumina powder compacts prepared in 10T, and made them shrink anisotropically during sintering. Sintering shrinkage was larger in the direction parallel to magnetic field direction (i.e., the c-axis direction of alumina crystal) than that in its perpendicular direction. The particle orientation structure in the compacts was confirmed with the immersion liquid method of polarized light microscope, and the grain alignment structure in the sintered bodies was also observed with X-ray diffraction, the c-plane was perpendicular to the magnetic field direction. On the other hand, isotropic sintering shrinkage occurred in the spherical alumina powder compacts prepared in 0T, which did not hold the particle orientation. The experimental results indicate that sintering shrinkage of spherical alumina powder compact depends on alumina crystal axis direction. Origin of the sintering shrinkage anisotropy for the spherical alumina powder compacts can be attributed to the particle orientation caused by high magnetic field.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Strain in the mesoscale kinetic Monte Carlo model for sintering;Computational Materials Science;2014-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3