A Perspective of Pulsed Laser Deposition (PLD) in Surface Engineering: Alumina Coatings and Substrates

Author:

Carradò Adele1,Pelletier Hervé2,Sima Felix3,Ristoscu Carmen3,Fabre Agnès4,Barrallier Laurent5,Mihailescu Ion N.3

Affiliation:

1. Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS)

2. INSA de Strasbourg

3. National Institute for Lasers

4. ENSAM

5. Arts and Metiers ParisTech

Abstract

In this article, two original studies of the alumina as porous substrate and PLD (pulsed laser deposition) thin films in view of its biomedical and tribological applications are presented. The first biomedical study aimed to evaluate the role of Al2O3 on thin deposited nanostructures. For this purpose, cerium stabilized zirconia doped hydroxyapatite thin films were deposited by PLD onto high purity, high density alumina substrates with different low porosities. For deposition, an UV KrF* (λ=248 nm, τ ~ 25 ns) excimer laser was used for the multi-pulse irradiation of the targets. The nanostructured surface morphologies of the thin films with micro droplets were evidenced by atomic force microscopy and scanning electron microscopy and the compositions with a Ca/P ratio of 1.7 by energy dispersive spectroscopy. The films were seeded with mesenchymal stem cells for in vitro tests. The cells showed good attachment and spread and covered uniformly the surface of the samples. Different functions of substrate porosities are observed in the efficiency of developing long filopodia and of obtaining the optimal intracellular organization. The second study aimed to understand the influence of micro-structural and mechanical characteristics on the tribological behaviour of stainless steel samples with PLD alumina coatings produced using an UV KrF* (λ=248 nm, τ ~ 20 ns) excimer laser and a sintered alumina target. Various microscopic observation techniques were used in order to connect the tribological response to the amorphous microstructure of the coatings. The results correspond to the determination of the mechanical characteristics by nanoindentation tests, scratch tests, and a tribological behaviour analysis of the treated steel against 100Cr6. The films were stoichiometric, partially crystallized with an amorphous matrix and their surfaces had few particulates deposited on. The obtained values of hardness and elastic modulus of the films were in good agreements with literature data.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3