Frictional Contact Problem Study on Compressor by a Parametric Quadratic Programming Method

Author:

Liao Ai Hua1

Affiliation:

1. Shanghai University of Engineering and Science

Abstract

A locomotive-type turbocharger compressor with 24 blades under combined centrifugal and interference-fit loading was considered in the numerical analysis. The solution of elastoplastic frictional contact problems belongs to the unspecified boundary problems where the interaction between two kinds of nonlinearities should occur. To save the time cost in the numerical computation, multi-substructure technique was adopted in the structural modeling. The effect of fit tolerance, wall thickness of shaft sleeve and rotational speed on the contact stress was discussed in detail in the numerical computation. To decrease the difficulty of the assembling process and make sure the safety of the working state, the amount of interference between the shaft sleeve and shaft by press-fitting should be controlled strictly to avoid the rapid increase of the contact stress. The numerical results show the high accuracy and good convergence of the algorithm presented here. The study play a referenced role in deciding the proper fit tolerance and improving design and manufacturing technology of compressor impellers.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Study on the Stress and Strain Characteristics of the Interference Fit of the Interference Locking Hydraulic Cylinder;2023 9th International Conference on Fluid Power and Mechatronics (FPM);2023-08-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3