Production and Characterization of Copper-Niobium Composite Electrocoatings

Author:

Robin Alain1,Rosa Jorge Luiz1,Borges Silva Messias1

Affiliation:

1. Universidade de São Paulo

Abstract

Copper-niobium composite electrocoatings were obtained by co-electrodeposition in acidic copper sulfate bath containing suspended niobium particles. The amount of incorporated particles was evaluated using a Central Composite Design (CCD) with three factors of control (cathodic current density, stirring rate and particle concentration in the bath) at three levels each. A great influence of particle concentration was observed. The stirring rate also had influence but to a lower extent and the cathodic current density was the least significant factor. The combination, both cathodic current density and particle concentration at the highest levels and stirring rate at the lowest level, led to the highest amount of incorporated particles. The behavior was not linear between the high and low levels for all factors. The roughness of the composites was higher than the pure copper coatings and increased with increasing current density. The microhardness of the composite layers was higher than that of pure copper deposits obtained under the same conditions due to copper matrix grain refinement and increased with the increase of both current density and incorporated particle volume fraction.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3