Affiliation:
1. Institute of Physics and Materials
2. BUT, Faculty of Mechanical Engineering
Abstract
Specific silicon nitride ceramics, the influence of the grain size and orientation on the bridging mechanisms was found. In ceramic matrix composites, crack-bridging mechanisms can provide substantial toughness enhancement coupled with the same and/or increased strength. The prediction of the crack propagation through interface elements based on the fracture mechanics approach and cohesive zone model is investigated. From a number of damage concepts the cohesive models seem to be especially attractive for the practical applications. Within the standard finite element package Abaqus a new finite element has been developed; it is written via the UEL (user’s element) procedure. Its shape can be modified according to the experimental data for the set of ceramics and composites. The element seems to be very stable from the numerical point a view. The shape of the traction separation law for four experimental materials is estimated via the iterative procedure based on the FEM modeling and experimentally determined displacement in indentation experiments, J–R curve is predicted and stability of the bridging law is tested.
Publisher
Trans Tech Publications, Ltd.
Subject
Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献