Effects of a Large Content of Yttrium Doping on Microstructure and Magnetostriction of Fe83Ga17 Alloy

Author:

Zhao Li Juan1,Tian Xiao1,Yao Zhan Quan2,Zhao Xuan1,Tegus Ojiyed1

Affiliation:

1. Inner Mongolia Normal University

2. Inner Mongolia Agricultural University

Abstract

As-cast (Fe0.83Ga0.17)100-xYx (x=0, 3, 6 and 9) alloys were prepared by non-consumable vacuum arc melting furnace under a protective argon atmosphere. The crystal structures and surface morphologies of the alloys were studied by X-ray diffraction (XRD), optical microscope (OM) and scanning electron microscopy (SEM), combined with energy dispersive spectroscopy (EDS), respectively. The surface domain structures were observed by atomic force microscopy (AFM). The magnetostriction coefficients of the alloys were measured by strain gauging method. The results showed that the as-cast Fe83Ga17 alloy was composed only of a single phase of A2 with bcc structure, whereas the ternary Fe-Ga-Y alloys contain multiphase structure, besides the A2 phase, (FeGa)17Y1.76 new phases are observed as well, and an elemental yttrium phase appeared when the yttrium content increased to x=6 and x=9. Doping with yttrium have an effect on the change of magnetic domain structure of the binary alloy. With increasing x, the magnetostriction coefficient of the (Fe0.83Ga0.17)100-xYx alloys decreased sharply. The minimum magnetostriction coefficient is reduced to 12 ppm at the magnetic field of 426kA/m when x=9.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3